STUDY ON SORPTION PROPERTIES OF ACTIVATED BIOSORBENTS (FISHSCALE AND SEASHELL) FOR THE REMOVAL OF ANIONIC SURFACTANT

Myint Myint Than¹, Nwe Nwe Aung², Aye Thant Zin³

Abstract

In this study, waste fishscale and seashell were used as biosorbents for the removal of surfactants from industrial wastewater. These biosorbents were collected from fish market in Pathein Township, Avevarwady Region. The selected samples were washed with distilled water for three times and were soaked in 3 % nitric acid for 24 h and then were washed again with distilled water until pH 7 and dried in an oven at 105°C and were made to powder form. The physiocochemical properties such as moisture content, bulk density and pH of raw fishscale powder (RFSP) and raw seashell powder (RSSP) were determined by conventional methods and characterized by modern techniques such as EDXRF, SEM, TG-DTA and FT IR analyses. RFSP and RSSP were calcined at various temperatures (400 C to 1000 C) to obtain heat activated fishscale powder 1-7 (HAFSP 1-7) and heat activated seashell powder 1-7 (HASSP 1-7). The critical micelle concentration (CMC) of sodium dodecyl sulphate (SDS) were obtained as 7x10⁻³ M, 7x10⁻³ M, 7x10⁻³ M, 4x10⁻³ M, 6x10⁻³ M and 5×10^{-3} M at pH 1, 2, 3, 4, 5 and 6 respectively. From these results, 7×10^{-3} M at pH 3 and 5x10⁻³ M at pH 6 were selected as optima CMC of SDS. The adsorption properties of different biosorbents (HAFSP-1, 2, 3, 4, 5, 6 and 7) and (HASSP-1, 2, 3, 4, 5, 6 and 7) were compared for the removal of SDS at pH 3 and 6. According to these analyses, HAFSP-5 and HASSP-7 were found to be more effective than other samples. Adsorption capacities of HAFSP-5 and HASSP-7 were determined at different contact time and pH by using UV-Vis spectrophotometer at λ_{max} 498 nm and 25°C. The optimum contact time was 60 min and pH were 3 and 6 respectively for the removal of SDS solution from the paper industrial wastewater by HAFSP-5 and HASSP-7. The outcome of the present research is the preparation of waste biosorbents for the removal of anionic surfactants from the paper industrial wastewater.

Keywords: fishscale, seashell, sodium dodecyl sulphate, critical micelle concentration, biosorbents

Introduction

Surfactants are surface active agents with a diverse group of chemicals consisting of a polar, water-soluble head group and a nonpolar hydrocarbon tail group. They are widely used in household and industrial products (Eriksson *et al.*, 2008; Reemtsma *et al.*, 2006). After use, residual surfactants are discharged into sewage systems or directly into surface water and most of them end up dispersed in different environmental compartments such as soil, water or sediment. They are harmful to human beings, fishes and vegetation and are responsible to cause foams in rivers and effluent treatment plants and to reduce the quality of water. They cause short term as well as long term changes in ecosystem (Sigoillot and Nguyex, 1992; Margesin and Schinner, 1998; Eichhorn *et al.*, 2001. 2002). They are classified into four main groups: anionic, nonionic, cationic and zwitterionic (amphoteric).

Surfactants can assume several supramolecular arrangements in solution, including circular aggregates called micelles. Micelles are formed when the surfactant concentration reaches a certain value, termed the critical micelle concentration (CMC). They are arranged with hydrophobic tails oriented inward and hydrophilic heads oriented toward the aqueous solution. Fishscale (FS) and seashell (SS) are waste product and abundant. The cell wall surface of biosorbents contained several of functional groups for surfactants attached onto adsorbents and the porous layer may provide a good possibility of surfactants to be adsorbed on its surface

¹ Assistant Lecturer, Department of Chemistry, Mandalar Degree College

² Dr, Lecturer, Department of Chemistry, Yangon University

³ Dr, Associate Professor, Department of Chemistry, Mandalar Degree College

(Kumar *et al.*, 2008; Nadeem *et al.*, 2008; Vieira *et al.*, 2011). Almost all the methods for spectrophotometric determination of anionic surfactants are based on the formation of ion associates and their subsequent extraction into organic solvents. In this paper, the removal of anionic surfactant from industrial wastewater was conducted by using activated biosorbents (Fishscale and Seashell).

Materials and Methods

Preparation of Biosorbents

Waste fishscale and seashell were collected from fish market in Pathein Township, Ayeyarwady Region. The fishscales were washed first with distilled water and were soaked in 3% nitric acid for 24 h and then were washed again with distilled water until pH 7. The seashell were washed with distilled water to remove any adhering impurities. They were dried in an oven at 105 °C for 2 h. The dried raw fishscale powder (RFSP) and raw seashell powder (RSSP) were obtained by grinding with motar and pestle followed by sieving (Srividya and Mohanty, 2009). RFSP and RSSP were calcined at various temperatures (400 °C to 1000 °C) to obtain heat activated fishscale powder 1-7 (HAFSP 1-7) and heat activated seashell powder 1-7 (HASSP 1-7).

Preparation of Stock Solution

Acridine orange (ACO) was used for the preparation of 5×10^{-3} M solution to be used as a stock. Sodium dodecyl sulphate (SDS) was purchased from BDH, Yangon Region. Toluene was used as an extractant. Glacial acetic acid was used to maintain the pH during extraction.

Determination of Physicochemical Properties of Raw Fishscale Powder (RFSP) and Raw Seashell Powder (RSSP)

Determination of bulk density

A clean dry 10 mL graduated measuring cylinder was weighed. It was filled with the dry powder sample to reach the mark and reweighed. The graduated cylinder was placed in a tapping box and the cylinder was tapped gently with several times until no more reduction in volume. The minimum volume was recorded and the bulk density was calculated.

Determination of Critical Micelle Concentration (CMC) of Sodium Dodecyl Sulphate (SDS)

The various concentration of SDS solution were prepared from 1×10^{-3} M to 10×10^{-3} M. This solution were maintained at pH 1, 2, 3, 4, 5 and 6. 0.5 mL of each concentration was placed into a beaker and 5 mL of toluene was added followed by the addition of 2 drops each of acridine orange and glacial acetic acid. The contents were shaken with separating funnel for 1 min and allowed to settle for 5 min. The toluene layer was discarded and it was measured by using UV-Vis spectrophotometer at λ_{max} 498 nm and 25°C.

Experimental Procedure

0.1 g of heat activated fishscale powder (HAFSP 1-7) was added into 100 mL of surfactant solution. It was shaken with electric shaker and filtered. This solution (10 mL) was placed into a beaker and 5 mL of toluene was added followed by the addition of 2 drops each of acridine orange and glacial acetic acid. The contents were shaken with separating funnel for 1 min and allowed to settle for 5 min. The toluene layer was discarded and it was measured by

using UV-Vis spectrophotometer at λ_{max} 498 nm and 25°C. Similarly, heat activated seashell powder (HASSP 1-7) was operated by using the above method.

Results and Discussion

Physicochemical Properties of Raw Fishscale Powder (RFSP) and Raw Seashell Powder (RSSP) Samples

The physicochemical properties such as moisture content, bulk density and pH of raw fishscale powder (RFSP) and raw seashell powder (RSSP) samples presented in Table 1. It was found that RFSP was higher than RSSP in moisture content. However, RSSP was higher than RFSP in bulk density and pH.

 Table 1 Physicochemical Properties of Raw Fishscale Powder (RFSP) and Raw Seashell

 Powder (RSSP) Samples

Sample	Moisture (%)	Bulk Density (gcm ⁻³)	pН
RFSP	9.77	0.79	6.8
RSSP	0.64	1.76	9.3

EDXRF Analysis

In this research, according to EDXRF spectra, RFSP contained calcium oxide as the major constituent and phosphorus(V) oxide as the second major constituent and other trace constituents. RSSP contained carbon dioxide as the major constituent, calcium oxide as the second major constituent and other trace constituents (Figures 1, 2 and Table 2).

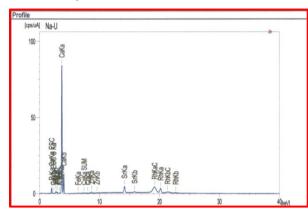


Figure 1 EDXRF spectrum of raw fishscale powder (RFSP)

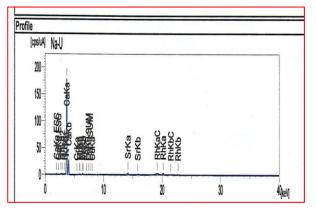


Figure 2 EDXRF spectrum of raw seashell powder (RSSP)

Constituents	Relative Abundance of Some metallic Oxide (%)				
	RFSP	RSSP			
CaO	59.018	48.584			
P_2O_5	39.254	-			
SO ₃	1.023	-			
K ₂ O	0.391	0.287			
SrO	0.180	0.075			
ZnO	0.062	-			
Fe ₂ O ₃	0.057	0.201			
CuO	0.014	0.010			
MnO	-	0.120			
Cr_2O_3	-	0.014			
CO ₂	-	50.710			

 Table 2 Results from EDXRF Spectrum of Raw Fishscale Powder (RFSP) and Raw Seashell Powder (RSSP)

SEM Analysis

SEM micrographs of RFSP and RSSP are indicated in Figures 3 and 4. In these SEM micrograph, RFSP was observed as non-porous structure and RSSP as rough and disordered surface with low porosity grains.

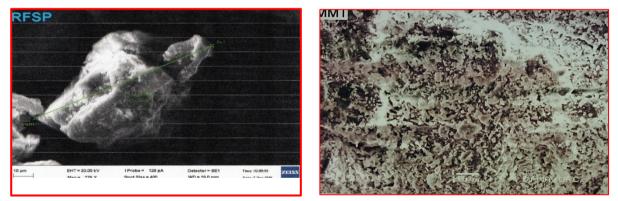


Figure 3Scanning electron micrograph
of raw fishscale powder (RFSP)

Figure 4Scanning electron micrograph
of raw seashell powder (RSSP)

FT IR Analysis

FT IR spectra of RFSP and RSSP are presented in Figures 5 and 6. The broad bands at 3460 and 3454 cm^{-1} are assigned to stretching vibration of O-H bonds. The bonds observed between 2950 and 2940 cm^{-1} are assigned to C-H stretching groups. The results are shown in Table 3.

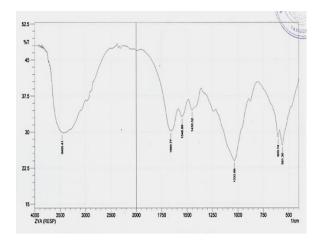


Figure 5 FT IR spectrum of raw fishscale powder (RFSP)

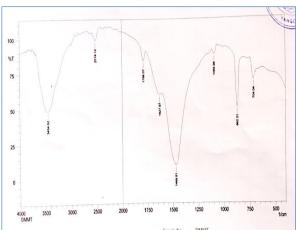


Figure 6 FT IR spectrum of raw seashell powder (RSSP)

Observed Frequency (cm ⁻¹)		- Reference [*]	Possible Assignment	
RFSP	RSSP			
3460	3454	3700-3200	Stretching vibration of O-H bonds	
2950	2940	2980-2850	C-H stretching	
-	1788	1810-1790 (s)	C=O stretching	
1660	1627	1670-1640	Stretching vibration of C=O bonds	
1548	-	1600-1400	C=C stretching	
1450	1469	1625-1430	C=C stretching of aromatic ring	
1033	1085	1100-1000	P-O-C stretching vibration	
-	862	890-850 (s)	C-C stretching	
-	704	705-570	C-C stretching	
603	-	615-535	C=O out of plane bending	

*Silverstein et al., (2003)

TG-DTA Analysis

In this experiment, the weight loss percent of RFSP was found to be 7.87 % due to the dehydration of surface water and moisture and there was endothermic peak at 80.53 °C. The exothermic peak was observed at about 370.13 °C and weight loss was 18.55 % due to the decomposition of volatile materials. The third weight loss was 14.44 % due to the decomposition and combustion of residual organic components at the temperature range of 380 °C to 600 °C (Figure 7 and Table 4). In RSSP, no weight loss was observed due to the absence of moisture and absorbed water at the temperature range of 38-280 °C. The exothermic peak was observed at about 361-450 °C due to the removal of organic volatile materials (Figure 8 and Table 5).

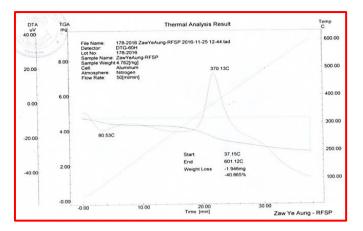


Figure 7 TG-DTA thermogram of raw fishscale powder (RFSP)

Table. 4TG-DTA Thermal Analysis Data of Raw Fishscale Powder (RFSP)

Temp: range (°C)	Weight loss (%)	Peak's Temperature (°C)	Nature of Peak	TG Remark
37-120	7.87	80.53	endothermic	- This weight loss is due to the removal of surface water and moisture
120-380	18.55	370.13	exothermic	- The second weight loss is due to the decomposition of volatile materials
380-600	14.44	-	-	- The third weight loss is due to the decomposition and combustion of residual organic components in the fish scales sample

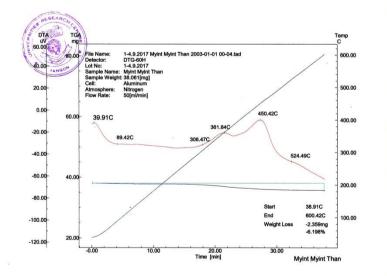
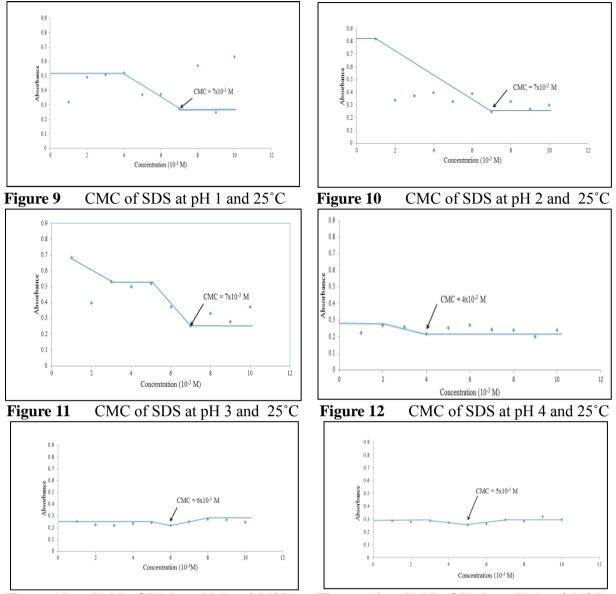


Figure 8 TG – DTA thermogram of raw seashell powder (RSSP)

Temp: range (°C)	Weight loss (%)	Peak's Temperature (°C)	Nature of Peak	TG Remark
38-280	-	-	-	- No weight loss due to the absence of moisture and absorbed water.
280- 600	6.19	361-450	exothermic	-This weight loss was due to the removal of organic volatile materials.

 Table 5
 TG-DTA Thermal Analysis Data of Raw Seashell Powder (RSSP)

Determination of Critical Micelle Concentration (CMC) of Sodium Dodecyl Sulphate (SDS)


The literature reported value for the CMC of SDS in water is 8.1×10^{-3} M (Haigh *et al.*, 1996). In this experiment, CMC of SDS were obtained as 7×10^{-3} M, 7×10^{-3} M, 7×10^{-3} M, 6×10^{-3} M and 5×10^{-3} M at pH 1, 2, 3, 4, 5 and 6 respectively. The optima CMC of SDS were 7×10^{-3} M at pH 3 and 5×10^{-3} M at pH 6. The results are shown in Tables (6–7) and Figures (9–14).

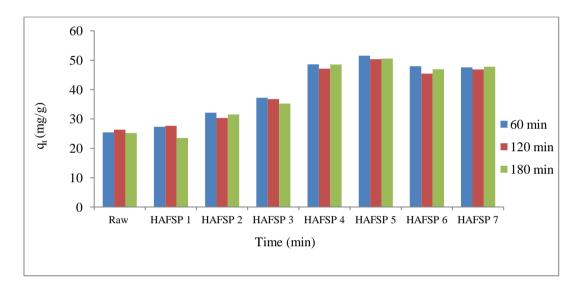
Concentration			Absorb	ance		
(10^{-3} M)	pH 1	рН 2	рН 3	рН 4	рН 5	pH 6
1	0.323	0.819	0.683	0.223	0.256	0.286
2	0.491	0.337	0.398	0.269	0.228	0.275
3	0.512	0.373	0.532	0.259	0.220	0.286
4	0.523	0.396	0.499	0.220	0.237	0.268
5	0.372	0.327	0.521	0.255	0.246	0.224
6	0.376	0.391	0.374	0.271	0.234	0.262
7	0.273	0.253	0.219	0.243	0.252	0.296
8	0.573	0.329	0.33	0.240	0.274	0.283
9	0.25	0.269	0.28	0.201	0.269	0.317
10	0.635	0.299	0.373	0.239	0.248	0.296

Table 6 CMC of SDS at pH 1, 2, 3, 4, 5 and 6 at 25°C

Table 7 Critical Micelle Concentration (CMC) of SDS at pH 1,2,3,4,5 and 6 at 25°C

рН	Critical Micelle Concentration (CMC)
1	7
2	7
3	7
4	4
5	6
6	5

Figure 13 CMC of SDS at pH 5 and 25°C


Comparison of the Adsorption Properties of Heat Activated Fishscale Powder 1-7 (HAFSP 1-7) and Heat Activated Seashell Powder 1-7 (HASSP 1-7)

Adsorption properties of biosorbents (HAFSP and HASSP) activated at (400 $^{\circ}$ C to 1000 $^{\circ}$ C) were compared for the removal of SDS at pH 3 and 6. It was found that, HAFSP-5 and HASSP-7 were more effective than other samples. The results are shown in Table 8 and Figure 15 for pH 3 and Table 9 and Figure 16 for pH 6.

Time	q _t (mg/g)							
(min)	Raw	HAFSP 1	HAFSP 2	HAFSP 3	HAFSP 4	HAFSP 5	HAFSP 6	HAFSP 7
60	25.44	27.33	32.11	37.22	48.61	51.55	47.96	47.55
120	26.34	27.67	30.34	36.77	47.15	50.34	45.46	46.87
180	25.22	23.54	31.54	35.27	48.54	50.55	46.89	47.78
					$C_0 - C_0$			

Table 8Comparison of the Adsorption Capacities of the Different Samples of Raw and
(HAFSP 1-7) at pH 3 and 25°C

Initial concentration of SDS = 100 ppmDosage of HAFSP = 0.1 gpH = 3Stirring rate = 200 rpm $q_t = \frac{C_0 - C_e}{\text{mass of adsorbent}} x \text{ volume of solution}$

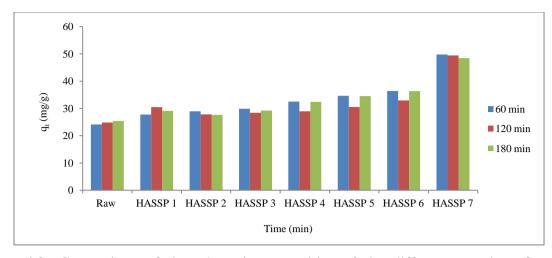

Figure 15 Comparison of the adsorption capacities of the different samples of raw and (HAFSP 1-7) at pH 3 and 25°C

Table 9 Comparison of the Adsorption	Capacities of the Different Samples of Raw and
(HASSP 1-7) at pH 6 and 25°C	

Time (min)				C	lt (mg/g)			
(11111)	Raw	HASSP 1	HASSP 2	HASSP 3	HASSP 4	HASSP 5	HASSP 6	HASSP 7
60	24.11	27.78	28.92	29.87	32.53	34.61	36.42	49.80
120	24.82	30.45	27.85	28.41	28.95	30.52	32.91	49.43
180	25.43	29.10	27.63	29.21	32.43	34.51	36.35	48.45

Initial concentration of SDS = 100 ppmDosage of HASSP = 0.1 g pH = 6 Stirring rate = 200 rpm

 $q_t = \frac{C_0 - C_e}{\text{mass of adsorbent}} x$ volume of solution

Figure 16 Comparison of the adsorption capacities of the different samples of raw and (HASSP 1-7) at pH 6 and 25°C

Effect of Different Contact Time and pH on the Removal of SDS by HAFSP-5 and HASSP-7

Adsorption capacities of HAFSP-5 and HASSP-7 were determined with different contact time and pH by using UV-Vis spectrophotometer at λ_{max} 498 nm and 25°C. It was observed that the optimum contact time for removal of SDS by HAFSP-5 and HASSP-7 was 60 min (Table 10 and Figure 17) and the pH optima were 3 and 6 by HAFSP-5 and HASSP-7, respectively (Table 11 and Figure 18).

Table 10 Effect of Contact Time on the Removal of SDS by HAFSP-5 (pH 3) and HASSP-7 (pH 6)

Time (min) -	$\mathbf{q}_{\mathbf{t}}(\mathbf{mg/g})$				
Time (min) –	HAFSP-5 (pH 3)	HASSP-7 (pH 6)			
30	34.42	30.11			
60	51.61	49.89			
90	50.64	48.72			
120	50.46	49.50			
150	50.12	48.95			
180	49.63	48.57			

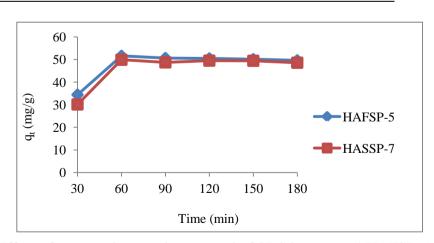


Figure 17 Effect of contact time on the removal of SDS by raw and HAFSP-5 (pH 3) and HASSP-7 (pH 6)

рН —	$q_t (mg/g)$	
	HTFSP-5	HTSSP-7
1	25.42	48.54
2	44.38	7.29
3	68.54	51.46
4	31.04	42.71
5	59.58	39.79
6	51.67	57.92
7	53.78	55.34
8	57.5	56.87
9	59.38	57.79
10	54.17	46.88

Table 11Effect of pH for the Removal of SDS by HAFSP-5 and HASSP-7 at 60 min and
25°C

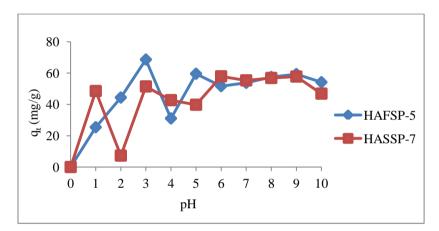


Figure 18 Effect of pH for the removal of SDS by HAFSP-5 and HASSP-7 at 60 min and 25°C

Conclusion

In this research work, the moisture percent of RFSP and RSSP was found to be 9.77% and 0.64%. From EDXRF spectrum, the preparing samples show CaO and CO₂ for major constituent and P₂O₅, SO₃, K₂O, SrO, ZnO, Fe₂O₃, CuO, MnO and Cr₂O₃ for second major constituent. From SEM results, RFSP was non-porous structure and RSSP was rough and disordered surface. In this experiment, the critical micelle concentration (CMC) of sodium dodecyl sulphate (SDS) were 7×10^{-3} M at pH 3 and 5×10^{-3} M at pH 6. HAFSP-5 and HASSP-7 were more effective among other samples. Adsorption capacities of selected samples HAFSP-5 and HASSP-7 at optima contact time and pH were 60 min and pH 3 and 6 for the removal of SDS solution at λ_{max} 498 nm and 25°C. The contribution of this study is that fishscale and seashell samples can be utilized as biosorbents in wastewater treatment.

Acknowledgements

The authors would like to express their profound gratitude to the Myanmar Academy of Arts and Science for giving permission to submit this paper and to Professor and Head, Dr Daw Ni Ni Than, Department of Chemistry, University of Yangon, for her kind encouragement.

References

- Eichhorn, P., Flavier, M.E., Paje, M.L. and Knepper, T.P. (2001). "Occurrence and Fate of Linear and Branched Alkylbenzene Sulfonates and Their Metabolites in Surface Waters in Philippines". *Journal of Science Total Environmental*, vol. 269, pp. 75-85
- Eichhorn, P., Rodrigues, S.V., Baumann, W. and Knepper, T.P. (2002). "Incomplete Degradation of Linear Alkylbenzene Sulfonate Surfactants in Brazilian Surface Waters and Pursuit of Their Polar Metabolites in drinking waters". *Journal of Science Total Environmental*, vol. 284, pp. 123-134
- Eriksson, E., Auffarth, K., Eilersen, A.M., Henze, M. and Ledin, A. (2003). "Household Chemicals and Personal Care Products as Sources for Xenobiotic Organic Compounds in Grey Wastewater". Journal of Water S.A, vol. 29, pp. 135-146
- Haigh, S.D. (1996). "A Review of the Interaction of Surfactants with Organic Contaminants in Soil". *Journal of Science Total Environment*, vol. 185, pp. 161-170
- Kumar, R., Bishnoi, N.R. and Bishnoi, K. (2008). "Biosorption of Chromium(VI) from Aqueous Solution and Electroplating Wastewater using Fungal Biomass". *Journal of Chemical Engineering*, vol. 135(3), pp. 202–208
- Margesin, R. and Schinner, F. (1998). "Low-Temperature Bioremediation of a Wastewater Contaminated with Anionic Surfactants and Fuel Oil". *Journal of Application Microbiology and Biotechnology*, vol. 49, pp. 482-486
- Nadeem, R., Ansari, T.M. and Khalid, A.M. (2008). "Fourier Transform Infrared Spectroscopic Characterization and Optimization of Pb (II) Biosorption by Fish (Labeo Rohita) Scales". *Journal of Hazardous Materials*, vol. 156(1-3), pp. 64–73
- Reemtsma, T., Weiss, S., Mueller, J., Petrovic, M., Gonzalez, S., Barcelo, D., Ventura, F. and Knepper, T.P. (2006).
 "Polar Pollutants Entry into the Water Cycle by Municipal Wastewater: A European Perspective". Journal of Environmental Science Technology, vol. 40, pp. 5451-5458
- Sigoillot, J.C. and Nguyex, M.H. (1992). "Complete Oxidation of Linear Alkyl-Benzene Sulfonate by Bacterial Communities Selected from Coastal Seawater". Journal of Application Environmental and Microbiology, vol. 58, pp. 1308-1312
- Silverstein, R.M., Webster. F.X. and Kiemle, D.J. (2003). *Spectrometric Identification of Organic Compounds*, New York: 7th Edition, John Wiley and Sons, Inc.
- Srividya, K. and Mohanty, K. (2009). "Biosorption of Hexavalent Chromium from Aqueous Solution by Calta Scales: Equilibrium and Kinetics Studies". *Journal of Chemical Engineering*, vol. 155 (3), pp. 666-673
- Vieira, E.F.S., Cestari, A.R., Carvalho, W.A.S., Oliveira, C. and Chagas, R. A. (2011). "The Use of Freshwater Fish Scale of the Species Leporinus Elongatus as Adsorbent for Anionic Dyes". *Journal of Thermal Analysis and Calorimetry*, vol. 109(3), pp. 1407-1412